GCE

Mathematics

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011

Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1(i)	Est $\mu=$ sample mean $=5.25$	B1 1	
(ii)	$\begin{aligned} & \text { Use }(\mathrm{i}) \pm \mathrm{zSD} \\ & \mathrm{SD}=0.19 / \sqrt{ } 5 \\ & z=1.96 \\ & 5.083<\mu<5.417 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A } \\ & \\ & \hline \end{aligned}$	With $\sqrt{ } 5$ seen Rounding to 5.08, 5.42
2	$\begin{aligned} & \text { Use } G-M \sim \mathrm{~N}\left(-6.23, \sigma^{2}\right) \\ & \sigma^{2}=6.87^{2}+10.25^{2} \\ & z=(16.23) / \sigma \\ & \quad=1.315 \\ & \text { Probability }=0.0942 \text { or } 0.0943 \end{aligned}$	M1 A1 M1 A1 A1 [5]	$\text { Or G-M-10~N(-16.23, } \left.\sigma^{2}\right)$ Accept 0.094
3(i) (ii)	$\begin{aligned} & \int_{0}^{2} a \mathrm{e}^{-1} \mathrm{~d} t+\int_{2}^{\infty} a \mathrm{e}^{-\frac{1}{2} t} \mathrm{~d} t=1 \\ & {\left[a \mathrm{e}^{-1} t\right]+\left[-2 a \mathrm{e}^{-1 / 2 t}\right]} \\ & =>a=1 / 4 \mathrm{e} \text { AG } \end{aligned}$ $\begin{aligned} & \int_{q_{3}}^{\infty} \frac{1}{4} e^{1-\frac{1}{2} t} \mathrm{~d} t=\frac{1}{4} \\ & {\left[-1 / 2 \mathrm{e}^{1-1 / 2 t}\right]} \\ & -1 / 2 q_{3}+1=-\ln 2 \\ & =>q_{3}=2(\ln 2+1) \text { or } 3.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { A1 } \\ & \hline-3 \\ & \hline \text { M1 } \\ & \\ & \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Properly obtained $\text { OR } \int_{0}^{2} \frac{1}{4} \mathrm{~d} t+\int_{2}^{q} \frac{1}{4} \mathrm{e}^{1-t / 2} \mathrm{~d} t=\frac{3}{4}$ AEF For taking logs (not $\ln (-)$) AEF
4	$\begin{aligned} & \hline \hat{p}_{2}=106 / 143, \hat{p}_{1}=61 / 107 \\ & \quad=0.7413 \quad=0.5701 \\ & \text { Pooled est } p=167 / 250 \\ & \text { Variance est }=\left({ }^{167} / 250\right)(83 / 250)\left(143^{-1}+107^{-1}\right) \\ & \text { Test statistic } z=(0.7413-0.5701) / \text { SD } \\ & \quad=2.84(35) \\ & \text { Smallest significance level }=0.23 \% \\ & \text { SR: No pe, B1B0B0M1A1 }(2.84) \mathrm{M} 1 \mathrm{~A} 1 \text { Max } 5 / 7 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{ }[7] \end{aligned}$	For both Only if used ART 0.22 or 0.23 Accept 0.0023 $V_{\mathbf{z}}$ M1A0 if 0.25\%
5(i)	$\begin{aligned} & s^{2}=0.2 \times 0.8 / 90 \\ & p_{s} \pm z s \\ & z=1.645 \\ & 0.1306<p_{y}<0.2693 \end{aligned}$	$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & 4 \end{array}$	OR /89 Art (0.131, 0.269)
(ii)	$0.7306<p_{p}<0.8694$		ft (i) Art (0.731, 0.869)
(iii)	If a large number of such intervals were calculated from independent samples, approximately 90% of all such intervals would contain p	$\text { B2 } \quad 2$	Or: Probability that such an interval contains p is 0.9 B1 for right idea
(iv)	($0.131,0.269$) encloses 0.25 so Mendel's theory is supported	M1 A1 $\sqrt{ } 2$ [9]	Or equivalent Ft CI(i)

6(i)	$\left.\left.\begin{array}{l} \begin{array}{rl} \mathrm{G}(y) & =\mathrm{P}(Y \leq y) \\ & =\mathrm{P}(X \geq 1 / y) \\ & =1-\mathrm{F}(1 / y) \\ & =(2 y-1) /(y+1) \\ \text { For } 1 / 2 \leq 1 / y \leq 2=>1 / 2 \leq y \leq 2 \\ X & \text { and } Y \text { have identical distributions } \end{array} \\ \text { SR: CDF not used. } \\ y \text { decreases with } x \\ \text { Use } \mathrm{g}(y)=\mathrm{f}(x(y) \mid \mathrm{d} x / \mathrm{d} y) \\ \mathrm{f}(x)=3 /(x+1)^{2} \\ \|\mathrm{~d} x / \mathrm{d} y\|=1 / y^{2} \\ \mathrm{~g}(y) \end{array}\right)=\left[3 /\left(\mathrm{y}^{-1}+1\right)^{2}\right]\left[1 / y^{2}\right]=3 /(y+1)^{2} ; \text { for } 1 / 2 \leq y \leq 2\right) .$ $\text { So } X \text { and } Y \text { have identical distributions }$	M1 A1 M1 A1 B1 B1 6 M1 M1A1 B1 M1A1B1 B1 8	Seen
(ii)	$\begin{aligned} & \mathrm{f}(x)=\mathrm{F}^{\prime}(x)=3 /(x+1)^{2}, 1 / 2 \leq x \leq 2 \\ & \begin{aligned} \mathrm{E}(X+1) & =\int_{\frac{1}{2}}^{2} \frac{3}{x+1} \mathrm{~d} x \\ & =3 \ln 2(2.08) \end{aligned} \\ & \mathrm{E}(1 / X)=\mathrm{E}(X) \\ & =3 \ln 2-1(1.08) \end{aligned}$	M1A1 M1 A1 M1 A1 6 [12]	Must have range of x AEF Not if awarded in (i)
7(i)	In a 2×2 contingency table	B1 1	Or equivalent Accept df=1
(ii)	H_{0} : Vaccine type and outcome are independent H_{1} : They are not independent E-values: 10.8112 .19 $318.19358 .81$ $\begin{aligned} \chi^{2} & =7.69^{2}\left(10.81^{-1}+12.19^{-1}+318.19^{-1}+358.81^{-1}\right) \\ & =10.67 \\ \mathrm{CV} & =6.635 \\ \mathbf{1 0 . 6 7} & >\mathrm{CV} \end{aligned}$ Reject H_{0}, there is sufficient evidence at the 1% significance level that the outcome of the test depends on the vaccine used The results is significant at a level less than $1 / 2 \%$, so the evidence is very strong	B1M*dep M1 A1 M1 M1 A1 B1 M1 A1 $\sqrt{ }$ dep*M A1 $\sqrt{ } 10$ [11]	Accept omission of H_{1} 1 correct E value Accept 1 dp 1 correct χ^{2} value ft E values Using Yates’ correctly Accept 10.7 $\sqrt{ } 10.67$ Sensible comment. $\sqrt{ } 10.67$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge

CB1 2EU

OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

